1 (a)

The diagram shows a figure $O A B C$, where $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$. The lines $A C$ and $O B$ intersect at the point M where M is the midpoint of the line $A C$.
(i) Find, in terms of a and \mathbf{c}, the vector $\overrightarrow{O M}$.
(ii) Given that $O M: M B=2: 3$, find \mathbf{b} in terms of \mathbf{a} and \mathbf{c}.
(b) Vectors \mathbf{i} and \mathbf{j} are unit vectors parallel to the x-axis and y-axis respectively.

The vector \mathbf{p} has a magnitude of 39 units and has the same direction as $-10 \mathbf{i}+24 \mathbf{j}$.
(i) Find \mathbf{p} in terms of \mathbf{i} and \mathbf{j}.
(ii) Find the vector \mathbf{q} such that $2 \mathbf{p}+\mathbf{q}$ is parallel to the positive y-axis and has a magnitude of 12 units.
(iii) Hence show that $|\mathbf{q}|=k \sqrt{5}$, where k is an integer to be found.

2 (a) Given that $\mathbf{p}=2 \mathbf{i}-5 \mathbf{j}$ and $\mathbf{q}=\mathbf{i}-3 \mathbf{j}$, find the unit vector in the direction of $3 \mathbf{p}-4 \mathbf{q}$.

3 Vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are such that $\mathbf{a}=\binom{2}{y}, \mathbf{b}=\binom{1}{3}$ and $\mathbf{c}=\binom{-5}{5}$.
(i) Given that $|\mathbf{a}|=|\mathbf{b}-\mathbf{c}|$, find the possible values of y.
(ii) Given that $\mu(\mathbf{b}+\mathbf{c})+4(\mathbf{b}-\mathbf{c})=\lambda(2 \mathbf{b}-\mathbf{c})$, find the value of μ and of λ.

4 Vectors \mathbf{i} and \mathbf{j} are unit vectors parallel to the x-axis and y-axis respectively.
(a) The vector \mathbf{v} has a magnitude of $3 \sqrt{5}$ units and has the same direction as $\mathbf{i}-2 \mathbf{j}$. Find \mathbf{v} giving your answer in the form $a \mathbf{i}+b \mathbf{j}$, where a and b are integers.
(b) The velocity vector \mathbf{w} makes an angle of 30° with the positive x-axis and is such that $|\mathbf{w}|=2$. Find \mathbf{w} giving your answer in the form $\sqrt{c} \mathbf{i}+d \mathbf{j}$, where c and d are integers.

The diagram shows a triangle $O A B$ such that $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. The point P lies on $O A$ such that $O P=\frac{3}{4} O A$. The point Q is the mid-point of $A B$. The lines $O B$ and $P Q$ are extended to meet at the point R. Find, in terms of \mathbf{a} and \mathbf{b},
(a) $\overrightarrow{A B}$,
(b) $\overrightarrow{P Q}$. Give your answer in its simplest form.

It is given that $n \overrightarrow{P Q}=\overrightarrow{Q R}$ and $\overrightarrow{B R}=k \mathbf{b}$, where n and k are positive constants.
(c) Find $\overrightarrow{Q R}$ in terms of n, a and \mathbf{b}.
(d) Find $\overrightarrow{Q R}$ in terms of k, \mathbf{a} and \mathbf{b}.
(e) Hence find the value of n and of k.

6 (a) The vector \mathbf{v} has a magnitude of 39 units and is in the same direction as $\binom{-12}{5}$. Write \mathbf{v} in the form $\binom{a}{b}$, where a and b are constants.
(b) Vectors \mathbf{p} and \mathbf{q} are such that $\mathbf{p}=\binom{r+s}{r+6}$ and $\mathbf{q}=\binom{5 r+1}{2 s-1}$, where r and s are constants. Given that $2 \mathbf{p}+3 \mathbf{q}=\binom{0}{0}$, find the value of r and of s

7 (a) Find the unit vector in the direction of $\binom{5}{-12}$.
(b) Given that $\binom{4}{1}+k\binom{-2}{3}=r\binom{-10}{5}$, find the value of each of the constants k and r.
(c) Relative to an origin O, the points A, B and C have position vectors $\mathbf{p}, 3 \mathbf{q}-\mathbf{p}$ and $9 \mathbf{q}-5 \mathbf{p}$ respectively.
(i) Find $\overrightarrow{A B}$ in terms of \mathbf{p} and \mathbf{q}.
(ii) Find $\overrightarrow{A C}$ in terms of \mathbf{p} and \mathbf{q}.
(iii) Explain why A, B and C all lie in a straight line.
(iv) Find the ratio $A B: B C$.

The diagram shows a quadrilateral $O A B C$. The point D lies on $O B$ such that $\overrightarrow{O D}=2 \overrightarrow{D B}$ and $\overrightarrow{A D}=m \overrightarrow{A C}$, where m is a scalar quantity.

$$
\overrightarrow{O A}=\mathbf{a} \quad \overrightarrow{O B}=\mathbf{b} \quad \overrightarrow{O C}=\mathbf{c}
$$

(i) Find $\overrightarrow{A D}$ in terms of m, a and \mathbf{c}.
(ii) Find $\overrightarrow{A D}$ in terms of \mathbf{a} and \mathbf{b}.
(iii) Given that $15 \mathbf{a}=16 \mathbf{b}-9 \mathbf{c}$, find the value of m.

The diagram shows the triangle $O A C$. The point B is the midpoint of $O C$. The point Y lies on $A C$ such that $O Y$ intersects $A B$ at the point X where $A X: X B=3: 1$. It is given that $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Find $\overrightarrow{O X}$ in terms of \mathbf{a} and \mathbf{b}, giving your answer in its simplest form.
(b) Find $\overrightarrow{A C}$ in terms of \mathbf{a} and \mathbf{b}.
(c) Given that $\overrightarrow{O Y}=h \overrightarrow{O X}$, find $\overrightarrow{A Y}$ in terms of \mathbf{a}, \mathbf{b} and h.
(d) Given that $\overrightarrow{A Y}=m \overrightarrow{A C}$, find the value of h and of m.

Question 1

1 (a)(i)	$\overline{O M}=\overline{O C}+\frac{1}{2}(\overline{O A}-\overline{O C})$ oe	M1	may be implied by correct answer.
	$\frac{1}{2}(\mathbf{a}+\mathbf{c})$	A1	

(a)(ii)	$\begin{aligned} & \mathbf{b}=\frac{5}{2} \overline{O M} \text { oe, } \frac{5}{2}(\text { their }(\mathrm{i})) \\ & \text { or } \overline{O M}=\frac{2}{3}(\mathbf{b}-\overline{O M}) \end{aligned}$	M1	dealing with ratio correctly to relate \mathbf{b} or $\overrightarrow{O B}$ to $\overrightarrow{O M}$
	$=\frac{5}{4}(a+c)$	A1	
(b)(i)	$\begin{aligned} & \|-10 \mathbf{i}+24 \mathbf{j}\|=26 \\ & \mathbf{p}=\frac{39}{26}(-10 \mathbf{i}+24 \mathbf{j}) \end{aligned}$	M1	magnitude of $-10 \mathbf{i}+24 \mathbf{j}$ and use with 39
	p $=-15 \mathbf{i}+36 \mathbf{j}$	A1	
(b)(ii)	If parallel to the y-axis, \mathbf{i} component is zero	M1	realising \mathbf{i} component is zero
	so $2 \mathbf{p}+\mathbf{q}=12 \mathbf{j}$	DM1	use of 12
	$\mathbf{q}=30 \mathbf{i}-60 \mathbf{j}$	A1	
(b)(iii)	$\|\mathbf{q}\|=30 \sqrt{1^{2}+(-2)^{2}}$ or $\sqrt{900} \times \sqrt{5}$	M1	attempt at magnitude of their \mathbf{q}
	$\|\mathbf{q}\|=30 \sqrt{5}$	A1	Answer Given: must have full and correct working

Question 2

2 (a)	$3(2 \mathbf{i}-5 \mathbf{j})-4(\mathbf{i}-3 \mathbf{j})$	$\mathbf{M 1}$	For expansion and collection of terms
	$3 \mathbf{p}-4 \mathbf{q}=2 \mathbf{i}-3 \mathbf{j}$	$\mathbf{A 1}$	
	Magnitude of their $2 \mathbf{i}-3 \mathbf{j}$ $\sqrt{2^{2}+(-3)^{2}}$	$\mathbf{M 1}$	For method to find magnitude
	Unit vector $=\frac{2 \mathbf{i}-3 \mathbf{j}}{\sqrt{13}}$	A1	

Question 3

3 (i)	$\mathbf{b}-\mathbf{c}=\binom{6}{-2}$	B1 M1	may be implied by further correct working for one correct attempt at using the modulus
	$\begin{aligned} & 4+y^{2}=36+4 \\ & y= \pm 6 \end{aligned}$	A1	
(ii)	$\begin{aligned} & \begin{array}{l} \mu+4=2 \lambda \\ \mu-4=-\lambda \\ \text { or } ~ \\ \\ -4 \mu-8=\lambda \end{array} \\ & \text { leading to } \mu=\frac{4}{3}, \lambda=\frac{8}{3} \text { oe } \end{aligned}$ $\text { allow } 1.33 \text { and } 2.67 \text { or better }$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { DB1 } \end{gathered}$	for one correct equation in μ and λ for a second correct equation in μ and λ for both, must have both previous B marks

Question 4

Question	Answer	Marks	Partial Marks
4 (a)	$\mathbf{v}=3 \sqrt{5} \times \frac{1}{\sqrt{5}}(\mathbf{i}-2 \mathbf{j})$	$\mathbf{M 1}$	attempt to find the magnitude of $(\mathbf{i}-2 \mathbf{j})$ and use
	$=3 \mathbf{i}-6 \mathbf{j}$	A1	for $3 \mathbf{i}-6 \mathbf{j}$ only
(b)	$\mathbf{w}=2 \cos 30^{\circ} \mathbf{i}+2 \sin 30^{\circ} \mathbf{j}$	M1	attempt to use trigonometry correctly to obtain components
	$=\sqrt{3 \mathbf{i}}+\mathbf{j}$	A1	

Question 5

5 (a)	b-a	B1	
(b)	$\frac{1}{4} \mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a}) \text { or }-\frac{3}{4} \mathbf{a}+\frac{1}{2}(\mathbf{a}+\mathbf{b})$	B1	For $\frac{1}{4} \mathbf{a}$ or $-\frac{3}{4} \mathbf{a}$
		B1	For $\frac{1}{2}(\mathbf{b}-\mathbf{a})$ or $\frac{1}{2}(\mathbf{a}+\mathbf{b})$
	$\frac{1}{2} \mathbf{b}-\frac{1}{4} \mathbf{a}$	B1	Correct and simplified
(c)	$n\left(\frac{1}{2} \mathbf{b}-\frac{1}{4} \mathbf{a}\right)$	B1	FT on their answer to (b)
(d)	$\frac{1}{2}(\mathbf{b}-\mathbf{a})+k \mathbf{b}$	M1	For use of their (a) and $k \mathbf{b}$
		A1	

(e)	$\frac{1}{2}(\mathbf{b}-\mathbf{a})+k \mathbf{b}=n\left(\frac{1}{2} \mathbf{b}-\frac{1}{4} \mathbf{a}\right)$ $-\frac{1}{2}=-\frac{n}{4}$ $\frac{1}{2}+k=\frac{n}{2}$	$\mathbf{M 1}$	For equating their (c) and (d) and then equating like vectors to obtain 2 equations
	$n=2$	A1	
	$k=\frac{1}{2}$	A1	

Question 6

Question	Answer	Marks	Guidance
6 (a)	$\left\|\binom{-12}{5}\right\|=13$	B1	For magnitude, may be implied by a correct \mathbf{v}
	$\mathbf{v}=\binom{-36}{15}$ or $3\binom{-12}{5}$	B1	Must be a vector
(a) Alternative	If $\left.t \left\lvert\, \begin{array}{r}-12 \\ 5\end{array}\right.\right) \mid=39, t=3$	B1	For value of t, may be implied by a correct \mathbf{v}
	$\mathbf{v}=\binom{-36}{15}$ or $3\binom{-12}{5}$	B1	
(b)		M1	For equating like vectors at least once
	$\begin{aligned} & 17 r+2 s+3=0 \\ & 2 r+6 s+9=0 \end{aligned}$	M1	Dep For solution of resulting equations to obtain 2 solutions
	$r=0$	A1	
	$s=-\frac{3}{2}$ oe	A1	

Question 7

7 (a)	$\frac{1}{13}\binom{5}{-12}$	$\mathbf{B 1}$	
(b)	$4-2 k=-10 r$ $1+3 k=5 r$	$\mathbf{M 1}$	equating like vectors to obtain 2 equations
	$r=-\frac{7}{10}, k=-\frac{3}{2}$	$\mathbf{M 1}$	Dep on previous M mark, for attempt to solve simultaneously
(c)(i)	$3 \mathbf{q}-2 \mathbf{p}$	$\mathbf{A 1}$	
(c)(ii)	$9 \mathbf{q}-6 \mathbf{p}$	$\mathbf{B 1}$	
(c)(iii)	A common point of A and the same direction vector	$\mathbf{B 1}$	
(c)(iv)	$1: 2$	$\mathbf{B 1}$	

Question 8

Question	Answer	Marks	Guidance
8	8 (i)	$\overrightarrow{A D}=m(\mathbf{c}-\mathbf{a})$	$\mathbf{B 1}$
(ii)	$\overrightarrow{A D}=\overrightarrow{O D}-\mathbf{a}$	$\mathbf{B 1}$	for $\overrightarrow{O D}=\frac{2}{3} \mathbf{b}$
	$=\frac{2}{3} \mathbf{b}-\mathbf{a}$	$\mathbf{B 1}$	FT their $\overrightarrow{O D}$ if $\overrightarrow{O D}=k \mathbf{b}$
	M1 $m(\mathbf{c}-\mathbf{a})=\frac{2}{3} \mathbf{b}-\mathbf{a}$	equating parts (i) and (ii)	
	$24 \mathbf{a}(1-m)+24 m \mathbf{c}=16 \mathbf{b}$ Comparing with $15 \mathbf{a}+9 \mathbf{c}=16 \mathbf{b}$	Attempt to eliminate or compare like vectors using given condition	

Question 9

9 (a)	$\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$ or $\overrightarrow{B A}=\mathbf{a}-\mathbf{b}$	B1	
	$\begin{aligned} & \overrightarrow{O X}=\mathbf{a}+\frac{3}{4} \overrightarrow{A B} \text { or } \overrightarrow{O X}=\mathbf{b}+\frac{1}{4} \overrightarrow{B A} \\ & \overrightarrow{O X}=\mathbf{a}+\frac{3}{4}(\mathbf{b}-\mathbf{a}) \text { or } \overrightarrow{O X}=\mathbf{b}+\frac{1}{4}(\mathbf{a}-\mathbf{b}) \end{aligned}$	M1	For correct use of ratio, using their $\overrightarrow{A B}$ or $\overrightarrow{B A}$
	$\overrightarrow{O X}=\frac{\mathbf{a}}{4}+\frac{3}{4} \mathbf{b}$	A1	
(b)	$\overrightarrow{A C}=2 \mathbf{b}-\mathbf{a}$	B1	
(c)	$\overrightarrow{A Y}=-\mathbf{a}+h\left(\frac{\mathbf{a}}{4}+\frac{3}{4} \mathbf{b}\right)$	B1	FT on their $\overrightarrow{O X}$
(d)	$-\mathbf{a}+h\left(\frac{\mathbf{a}}{4}+\frac{3}{4} \mathbf{b}\right)=m(2 \mathbf{b}-\mathbf{a})$	M1	For equating appropriate vectors and attempt to equate like vectors
	$-1+\frac{h}{4}=-m$	A1	FT from their $\overrightarrow{A Y}$ and $\overrightarrow{A C}$
	$\frac{3 h}{4}=2 m$	A1	FT from their $\overrightarrow{A Y}$ and $\overrightarrow{A C}$
	$h=\frac{8}{5}, m=\frac{3}{5}$	A1	For both

