[2]

[2]

The diagram shows a figure *OABC*, where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$. The lines *AC* and *OB* intersect at the point *M* where *M* is the midpoint of the line *AC*.

(i) Find, in terms of **a** and **c**, the vector \overrightarrow{OM} .

(ii) Given that OM:MB = 2:3, find **b** in terms of **a** and **c**.

Source: 0606/11/M/J/17 - Question No. 5

- (b) Vectors **i** and **j** are unit vectors parallel to the *x*-axis and *y*-axis respectively. The vector **p** has a magnitude of 39 units and has the same direction as $-10\mathbf{i} + 24\mathbf{j}$.
 - (i) Find **p** in terms of **i** and **j**. [2]

(ii) Find the vector q such that 2p + q is parallel to the positive y-axis and has a magnitude of 12 units.

(iii) Hence show that $|\mathbf{q}| = k\sqrt{5}$, where k is an integer to be found.

[2]

Source: 0606/11/M/J/18 - Question No. 8

Page 3

2 (a) Given that $\mathbf{p} = 2\mathbf{i} - 5\mathbf{j}$ and $\mathbf{q} = \mathbf{i} - 3\mathbf{j}$, find the unit vector in the direction of $3\mathbf{p} - 4\mathbf{q}$. [4]

Source: 0606/12/M/J/16 - Question No. 3

- **3** Vectors **a**, **b** and **c** are such that $\mathbf{a} = \begin{pmatrix} 2 \\ y \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.
 - (i) Given that $|\mathbf{a}| = |\mathbf{b} \mathbf{c}|$, find the possible values of y.

[3]

(ii) Given that $\mu(\mathbf{b} + \mathbf{c}) + 4(\mathbf{b} - \mathbf{c}) = \lambda(2\mathbf{b} - \mathbf{c})$, find the value of μ and of λ . [3]

Source: 0606/12/M/J/17 - Question No. 3

- 4 Vectors i and j are unit vectors parallel to the x-axis and y-axis respectively.
 - (a) The vector v has a magnitude of $3\sqrt{5}$ units and has the same direction as i 2j. Find v giving your answer in the form ai + bj, where a and b are integers. [2]

(b) The velocity vector w makes an angle of 30° with the positive x-axis and is such that |w| = 2. Find w giving your answer in the form $\sqrt{c} \mathbf{i} + d\mathbf{j}$, where c and d are integers. [2]

The diagram shows a triangle *OAB* such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point *P* lies on *OA* such that $OP = \frac{3}{4}OA$. The point *Q* is the mid-point of *AB*. The lines *OB* and *PQ* are extended to meet at the point *R*. Find, in terms of **a** and **b**,

(a) \overrightarrow{AB} ,

[1]

(b) \overrightarrow{PQ} . Give your answer in its simplest form.

[3]

Source: 0606/12/M/J/20 - Question No. 8

It is given that $n\overrightarrow{PQ} = \overrightarrow{QR}$ and $\overrightarrow{BR} = k\mathbf{b}$, where *n* and *k* are positive constants. (c) Find \overrightarrow{QR} in terms of *n*, **a** and **b**. [1]

(d) Find \overrightarrow{QR} in terms of k, **a** and **b**.

(e) Hence find the value of *n* and of *k*.

[3]

[2]

Source: 0606/12/O/N/18 - Question No. 7

6 (a) The vector **v** has a magnitude of 39 units and is in the same direction as $\begin{pmatrix} -12\\ 5 \end{pmatrix}$. Write **v** in the form $\begin{pmatrix} a\\ b \end{pmatrix}$, where *a* and *b* are constants. [2]

(b) Vectors **p** and **q** are such that $\mathbf{p} = \begin{pmatrix} r+s \\ r+6 \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} 5r+1 \\ 2s-1 \end{pmatrix}$, where *r* and *s* are constants. Given that $2\mathbf{p} + 3\mathbf{q} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, find the value of *r* and of *s*. [4]

7 (a) Find the unit vector in the direction of $\begin{pmatrix} 5\\-12 \end{pmatrix}$. [1]

(b) Given that
$$\binom{4}{1} + k \binom{-2}{3} = r \binom{-10}{5}$$
, find the value of each of the constants k and r. [3]

Source: 0606/13/M/J/20 - Question No. 6

(c)	Rela resp	ative to an origin O, the points A, B and C have position vectors \mathbf{p} , $3\mathbf{q}-\mathbf{p}$ and $9\mathbf{q}-\mathbf{p}$ ectively.	- 5 p
	(i)	Find \overrightarrow{AB} in terms of p and q .	[1]
	(ii)	Find \overrightarrow{AC} in terms of p and q .	[1]

(iii) Explain why *A*, *B* and *C* all lie in a straight line. [1]

(iv) Find the ratio AB : BC.

[1]

Page 10

The diagram shows a quadrilateral *OABC*. The point *D* lies on *OB* such that $\overrightarrow{OD} = 2\overrightarrow{DB}$ and $\overrightarrow{AD} = \overrightarrow{mAC}$, where *m* is a scalar quantity.

$$\overrightarrow{OA} = \mathbf{a}$$
 $\overrightarrow{OB} = \mathbf{b}$ $\overrightarrow{OC} = \mathbf{c}$

(i) Find \overrightarrow{AD} in terms of m, **a** and **c**.

(ii) Find \overrightarrow{AD} in terms of **a** and **b**.

(iii) Given that $15\mathbf{a} = 16\mathbf{b} - 9\mathbf{c}$, find the value of *m*. [3]

[2]

[1]

The diagram shows the triangle *OAC*. The point *B* is the midpoint of *OC*. The point *Y* lies on *AC* such that *OY* intersects *AB* at the point *X* where *AX*: *XB* = 3:1. It is given that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Find \overrightarrow{OX} in terms of **a** and **b**, giving your answer in its simplest form. [3]

(b) Find \overrightarrow{AC} in terms of **a** and **b**.

Source: 0606/13/O/N/20 - Question No. 9 Page 13

(c) Given that $\overrightarrow{OY} = h\overrightarrow{OX}$, find \overrightarrow{AY} in terms of **a**, **b** and *h*. [1]

(d) Given that $\overrightarrow{AY} = \overrightarrow{mAC}$, find the value of *h* and of *m*. [4]

1 (a)(i)	$\overline{OM} = \overline{OC} + \frac{1}{2} \left(\overline{OA} - \overline{OC} \right)$ oe	M1	may be implied by correct answer.
	$\frac{1}{2}(\mathbf{a}+\mathbf{c})$	A1	
(a)(ii)	$\mathbf{b} = \frac{5}{2} \overrightarrow{OM} \text{ oe }, \frac{5}{2} (their (i))$	M1	dealing with ratio correctly to relate b or \overrightarrow{OB} to \overrightarrow{OM}
	or $OM = \frac{2}{3} (\mathbf{b} - OM)$		
	$=\frac{5}{4}(\mathbf{a}+\mathbf{c})$	A1	
(b)(i)	-10i + 24j = 26	M1	magnitude of $-10\mathbf{i} + 24\mathbf{j}$ and use with 39
	$\mathbf{p} = \frac{39}{26}(-10\mathbf{i} + 24\mathbf{j})$		
	$\mathbf{p} = -15\mathbf{i} + 36\mathbf{j}$	A1	
(b)(ii)	If parallel to the y-axis, i component is zero	M1	realising i component is zero
	so $2p + q = 12j$	DM1	use of 12
	$\mathbf{q} = 30\mathbf{i} - 60\mathbf{j}$	A1	
(b)(iii)	$ \mathbf{q} = 30\sqrt{1^2 + (-2)^2}$ or $\sqrt{900} \times \sqrt{5}$	M1	attempt at magnitude of <i>their</i> \mathbf{q}
	$ \mathbf{q} = 30\sqrt{5}$	A1	Answer Given: must have full and correct working

2 (a)	3(2i-5j) - 4(i-3j)	M1	For expansion and collection of terms
	$3\mathbf{p} - 4\mathbf{q} = 2\mathbf{i} - 3\mathbf{j}$	A1	
	Magnitude of their $2\mathbf{i} - 3\mathbf{j}$ $\sqrt{2^2 + (-3)^2}$	M1	For method to find magnitude
	Unit vector = $\frac{2\mathbf{i} - 3\mathbf{j}}{\sqrt{13}}$	A1	

3 (i)	$\mathbf{b} - \mathbf{c} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$	B1	may be implied by further correct working
	(2)	M1	for one correct attempt at using the modulus
	$4 + y^2 = 36 + 4$ $y = \pm 6$	A1	
(ii)	$\mu + 4 = 2\lambda$ or $-4\mu + 24 = 7\lambda$ $\mu - 4 = -\lambda$ or $8\mu - 8 = \lambda$	B1 B1	for one correct equation in μ and λ for a second correct equation in μ and λ
	leading to $\mu = \frac{4}{3}$, $\lambda = \frac{8}{3}$ oe	DB1	for both, must have both previous ${\bf B}$ marks
	allow 1.33 and 2.67 or better		

Question	Answer	Marks	Partial Marks
4 (a)	$\mathbf{v} = 3\sqrt{5} \times \frac{1}{\sqrt{5}} (\mathbf{i} - 2\mathbf{j})$	M1	attempt to find the magnitude of $\left(i-2j\right)$ and use
	=3i-6j	A1	for $3i - 6j$ only
(b)	$\mathbf{w} = 2\cos 30^\circ \mathbf{i} + 2\sin 30^\circ \mathbf{j}$	M1	attempt to use trigonometry correctly to obtain components
	$=\sqrt{3}\mathbf{i}+\mathbf{j}$	A1	

5 (a)	b – a	B1	
(b)	$\frac{1}{4}\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $-\frac{3}{4}\mathbf{a} + \frac{1}{2}(\mathbf{a} + \mathbf{b})$	B1	For $\frac{1}{4}$ a or $-\frac{3}{4}$ a
		B1	For $\frac{1}{2}(\mathbf{b}-\mathbf{a})$ or $\frac{1}{2}(\mathbf{a}+\mathbf{b})$
	$\frac{1}{2}\mathbf{b} - \frac{1}{4}\mathbf{a}$	B1	Correct and simplified
(c)	$n\left(\frac{1}{2}\mathbf{b}-\frac{1}{4}\mathbf{a}\right)$	B1	FT on <i>their</i> answer to (b)
(d)	$\frac{1}{a}(\mathbf{b}-\mathbf{a})+k\mathbf{b}$	M1	For use of <i>their</i> (a) and <i>k</i> b
	2	A1	
(e)	$\frac{1}{2}(\mathbf{b}-\mathbf{a})+k\mathbf{b}=n\left(\frac{1}{2}\mathbf{b}-\frac{1}{4}\mathbf{a}\right)$ $-\frac{1}{2}=-\frac{n}{4}$ $\frac{1}{2}+k=\frac{n}{2}$	M1	For equating <i>their</i> (c) and (d) and then equating like vectors to obtain 2 equations
	<i>n</i> = 2	A1	
	$k = \frac{1}{2}$	A1	

Question	Answer	Marks	Guidance
6 (a)	$ \binom{-12}{5} = 13 $	B1	For magnitude, may be implied by a correct $\ensuremath{\mathbf{v}}$
	$\mathbf{v} = \begin{pmatrix} -36\\15 \end{pmatrix} \text{ or } 3 \begin{pmatrix} -12\\5 \end{pmatrix}$	B1	Must be a vector
(a) Alternative	If $t \begin{vmatrix} -12 \\ 5 \end{vmatrix} = 39, t = 3$	B1	For value of t , may be implied by a correct v
	$\mathbf{v} = \begin{pmatrix} -36\\15 \end{pmatrix} \text{ or } 3 \begin{pmatrix} -12\\5 \end{pmatrix}$	B1	
(b)		M1	For equating like vectors at least once
	17r + 2s + 3 = 0 2r + 6s + 9 = 0	M1	Dep For solution of resulting equations to obtain 2 solutions
	<i>r</i> = 0	A1	
	$s = -\frac{3}{2}$ oe	A1	

7 (a)	$\frac{1}{13} \begin{pmatrix} 5\\ -12 \end{pmatrix}$	B1	
(b)	4 - 2k = -10r $1 + 3k = 5r$	M1	equating like vectors to obtain 2 equations
	$r = -\frac{7}{10}, \ k = -\frac{3}{2}$	M1	Dep on previous M mark, for attempt to solve simultaneously
		A1	
(c)(i)	3 q – 2 p	B1	
(c)(ii)	9 q – 6 p	B1	
(c)(iii)	A common point of <i>A</i> and the same direction vector	B1	
(c)(iv)	1:2	B1	

Question	Answer	Marks	Guidance
8 (i)	$\overrightarrow{AD} = m(\mathbf{c} - \mathbf{a})$	B1	
(ii)	$\overrightarrow{AD} = \overrightarrow{OD} - \mathbf{a}$	B1	for $\overrightarrow{OD} = \frac{2}{3}\mathbf{b}$
	$=\frac{2}{3}\mathbf{b}-\mathbf{a}$	B1	FT their \overrightarrow{OD} if $\overrightarrow{OD} = k\mathbf{b}$
(iii)	$m(\mathbf{c}-\mathbf{a})=\frac{2}{3}\mathbf{b}-\mathbf{a}$	M1	equating parts (i) and (ii)
	$24\mathbf{a}(1-m) + 24m\mathbf{c} = 16\mathbf{b}$ Comparing with $15\mathbf{a} + 9\mathbf{c} = 16\mathbf{b}$	M1	attempt to eliminate or compare like vectors using given condition
	$m = \frac{3}{8}$	A1	

9 (a)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$	B1	
	$\overrightarrow{OX} = \mathbf{a} + \frac{3}{4} \overrightarrow{AB} \text{ or } \overrightarrow{OX} = \mathbf{b} + \frac{1}{4} \overrightarrow{BA}$	M1	For correct use of ratio, using <i>their</i> \overrightarrow{AB} or \overrightarrow{BA}
	$\overrightarrow{OX} = \mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}) \text{ or } \overrightarrow{OX} = \mathbf{b} + \frac{1}{4}(\mathbf{a} - \mathbf{b})$		
	$\overrightarrow{OX} = \frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}$	A1	
(b)	$\overrightarrow{AC} = 2\mathbf{b} - \mathbf{a}$	B1	
(c)	$\overrightarrow{AY} = -\mathbf{a} + h\left(\frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}\right)$	B1	FT on <i>their</i> \overrightarrow{OX}
(d)	$-\mathbf{a} + h\left(\frac{\mathbf{a}}{4} + \frac{3}{4}\mathbf{b}\right) = m\left(2\mathbf{b} - \mathbf{a}\right)$	M1	For equating appropriate vectors and attempt to equate like vectors
	$-1 + \frac{h}{4} = -m$	A1	FT from <i>their</i> \overrightarrow{AY} and \overrightarrow{AC}
	$\frac{3h}{4} = 2m$	A1	FT from <i>their</i> \overrightarrow{AY} and \overrightarrow{AC}
	$h = \frac{8}{5}, m = \frac{3}{5}$	A1	For both